Phonon mediated spin relaxation in a moving quantum dot: Doppler shift, Cherenkov radiation, and spin relaxation boom
نویسندگان
چکیده
We study relaxation of a moving spin qubit caused by phonon noise. As we vary the speed of the qubit, we observe several interesting features in spin relaxation and the associated phonon emission, induced by Doppler effect. In particular, in the supersonic regime, the phonons emitted by the relaxing qubit is concentrated along certain directions, similar to the shock waves produced in classical Cherenkov effect. As the speed of the moving qubit increases from the subsonic regime to the supersonic regime, the qubit experiences a peak in the spin relaxation rate near the speed of sound, which we term a spin relaxation boom in analogy to the classical sonic boom. We also find that the moving spin qubit may have a lower relaxation rate than a static qubit, which hints at the possibility of coherence-preserving transportation for a spin qubit. While the physics we have studied here has strong classical analogies, we do find that quantum confinement for the spin qubit plays an important role in all the phenomena we observe. Specifically, it produces a correction on the Cherenkov angle, and removes the divergence in relaxation rate at the sonic barrier. It is our hope that our results would encourage further research into approaches for transferring and preserving quantum information in spin qubit architectures.
منابع مشابه
Doppler effect induced spin relaxation boom
We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical son...
متن کاملPhonon modulation of the spin-orbit interaction as a spin relaxation mechanism in InSb quantum dots
We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. By studying suitable choices of magnetic field and lateral dot size, we determine regions where the spin relaxation rates can be practi...
متن کاملSpin relaxation in quantum dots
Results are given for spin relaxation in quantum dots due to acoustic phonon-assisted flips of single spins at low temperatures. The dominant spin relaxation processes for varying dot size, temperature, and magnetic field are identified. These processes are mediated by the spin-orbit interaction and are described within a generalized effective mass treatment. Particular attention is given to ph...
متن کاملElectron spin relaxation in a transition-metal dichalcogenide quantum dot
We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin–orbit coupling. First we will discuss which bound state sol...
متن کاملElectron Spin-Phonon Relaxation in Quantum Dots
We calculate the spin relaxation rates in parabolic quantum dots due to the phonon modulation of the spin-orbit interaction in presence of an external magnetic field. Both, deformation potential (DP) and piezoelectric (PE) electron-phonon couplings are included in the Pavlov-Firsov spin-phonon Hamiltonian. We demonstrate that the spin relaxation rates are particularly sensitive with the Landé g...
متن کامل